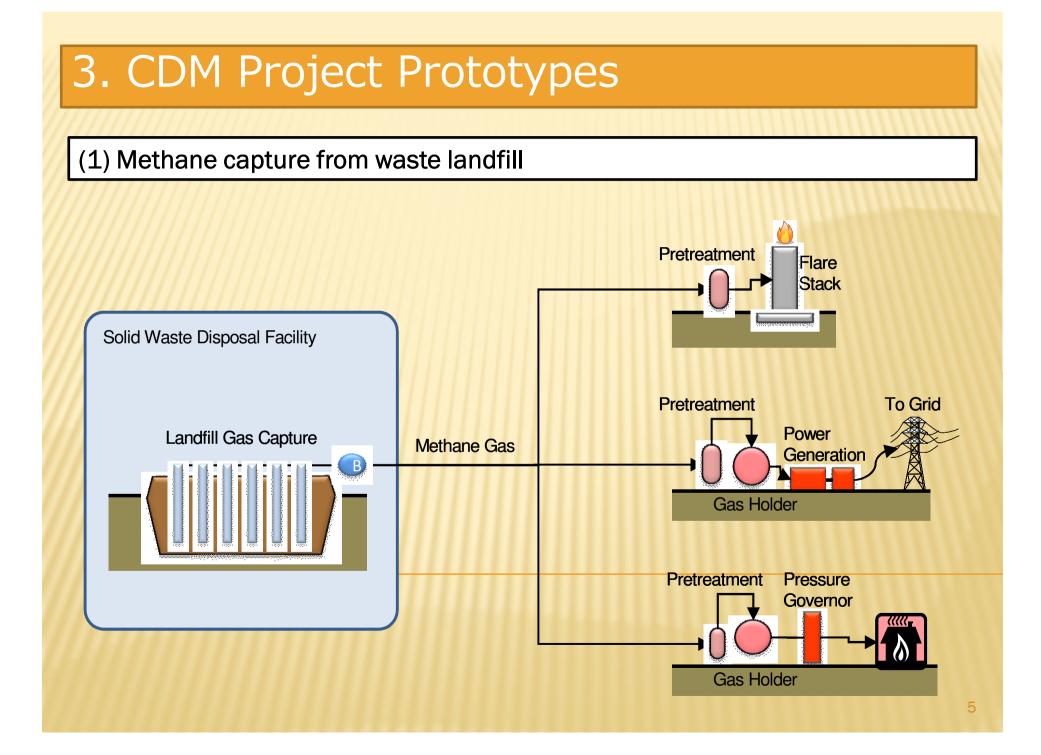
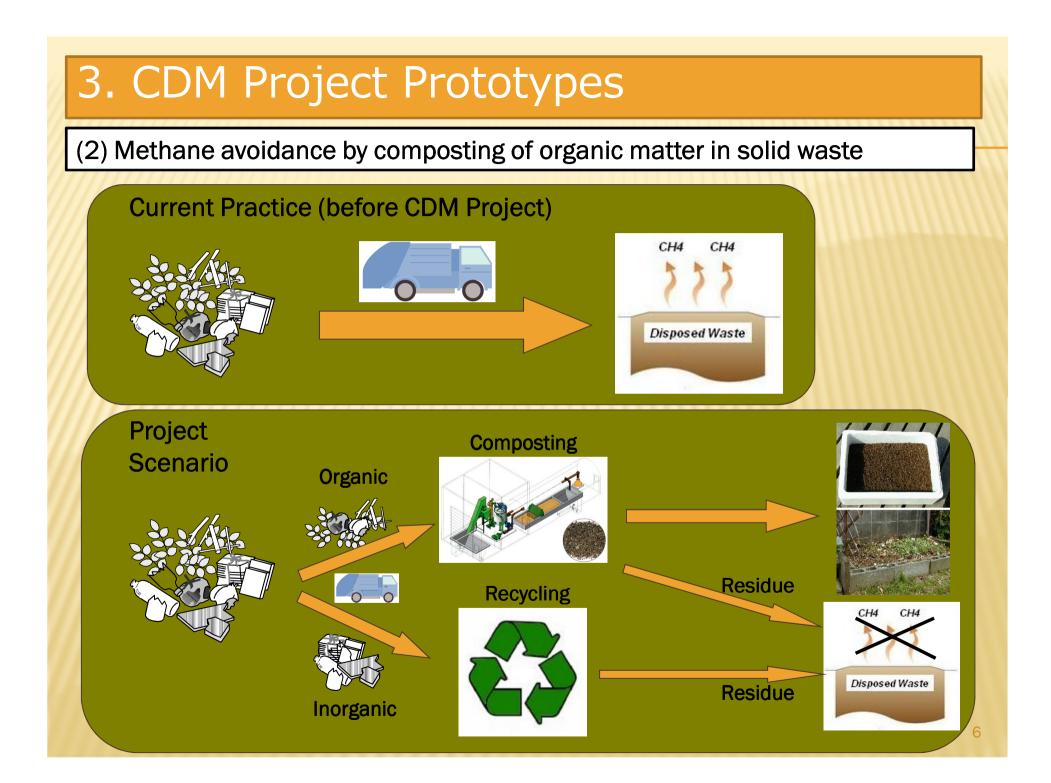

Recap of Waste Management/Handling CDM Project

8 July 2011

Satoshi Sugimoto JICA Expert Team

1. Waste Management and GHGs Emission





3. CDM Project Prototypes

GHG emission source	Emission Reduction Methods			
		Flaring (Burning)		
Solid Waste/	CH ₄ Capture	Direct Heat Use		
Wastewater		Power Generation		
	CH ₄ Emission Avoidance/Reduction by			
	Aerobic Treatment of Organic Matter			
Composting				

Applicable GHGs emission reduction methods are basically same for solid waste and wastewater treatment.

4. Key parameters in CH₄ emission from

waste

CH₄ emission from waste

CH₄ is generated as a result of <u>degradation of</u> ① organic materials under ② anaerobic
Conditions.

The time required for the waste to decay (half-life) is different among the types of waste.

Part of CH₄ generated is oxidized in the cover of solid waste

disposal (CH₄ oxidation by methanotrophic micro-organisms in cover soils).

Key Parameter in CH₄ emission

Degradable ① organic materials (Degradable Organic Carbon: DOC) in waste.
 Degree of ② anaerobic condition in waste (Methane Correction Factor: MCF).
 The time required for the waste to decay (decay rate)

QuestionEstimate the amount of CH_4 emission from the solid wastedisposal site in accordance with the steps below.

STEP 1: Estimate the amount of waste disposed by types of waste based on the data given below.

Waste amount and composition

Items	Preconditions	
The amount of waste disposed		100,000 tons/year
Waste composition by types	Paper/Cardboard	15%
(% by weight)	Textiles	3%
	Food waste	25%
	Wood	5%
	Garden and park waste	15%
	Inert waste	37%

STEP 1: Estimate the amount of waste disposed by types of waste based on the data given below.

Answer (Amount of Waste by Types)

Type of Waste	Amount (tonnes/year)
Paper/Cardboard	15,000
Textiles	3,000
Food Waste	25,000
Wood	5,000
Garden and Park Waste	15,000
Inert Waste	37,000

STEP 2: Estimate the total amount of DOCs (Degradable Organic Carbons) decayed in the first year by using the estimation results made in STEP 1 and the data given below.

Type of Waste	Content of DOCs in the Waste (% on weight basis)	Decay rate of DOCs in the first year (%)
Paper/cardboard	40%	6.8%
Textiles	24%	6.8%
Food Waste	15%	33.0%
Wood	43%	3.4%
Garden/park waste	20%	15.6%
Inert waste	0%	0%

STEP 2: Estimate the total amount of DOCs (Degradable Organic Carbons) decayed in the first year by using the estimation results made in STEP 1 and the data given below.

Answer (Total Amount of DOCs decayed in the first year

Type of Waste	Amount of DOCs decayed in the first year (tonnes/year)
Paper/Cardboard	408
Textiles	48
Food Waste	1,237
Wood	73
Garden and Park Waste	468
Inert Waste	0
Total amount of DOCs decayed in the first year	2,234

(Round down at decimal point.)

STEP 3: Estimate the amount of CH₄ released to the atmosphere in the first year if all the waste above is disposed at the unmanaged landfill with 7m depth, using the estimation result above and the data given below.

Equation for estimating the CH₄ emission (in CO₂ equivalent) from waste landfill

 CH_4 emission (in tonne CO_2 e)

= 5.67 × MCF × (Total amount of DOCs decayed in the first year)

MCF: Methane correction factor (to determine the fraction of methane that are actually released to the atmosphere without oxidization, depending upon the type of landfills)

Type waste landfill	MCF
Managed- anaerobic	1.0
Managed-semi-aerobic	0.5
Unmanaged-deep (>5m waste) and/or high waste table	0.8
Unmanaged shallow (<5 m waste)	0.4
Uncategorized waste disposal	0.6

5. Exercise: Estimation CH₄ emission from SWDS **ANSWER** 10,133 Tonnes CO₂e (Round down at decimal point.)